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ABSTRACT 

/9Lv-Y 
An analysis was made i n  o rder  to find the flow ra tes  and position 

of liquid levels in tanks when they a r e  drained by gravity. During this 

process  unsteady flow occurs  and a given steady flow cannot be assumed 

any more.  Samples fo r  one-tank and two-tank configurations a r e  brought 

up with and without hydraulic losses in  the lines. The resu l t s  a r e  

differential equations which can be.  solved numerically b y  a digital, 

computer. 
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LIST OF SYMBOLS 

A Cross-sectional a r e a  of the tank 

a Cross-sectional a r e a  of the tube 

C Integration constant 

D Hydraulic diameter 

d Diameter of the tube 

e Length of the tube 

F External force,  iner t ia  force 

g Gravitational constant 

h 

? 
1 

3 

k 

K 

I 

m 
3 

n 

n 

P 

P 

PO 

Pa 

Q 

Initial height in  the tank 

Liquid height in the tank a t  any time 

Unit vector for  the x axis 

Unit vector for  the y axis  

Unit vector for the z axis 

La tera l  surface 

Mean roughness height 

Mass of the fluid 

External normal  to the surface element 

Exponent (constant) 

Per imeter  

P r e s  su re  

Tank p res su re  

Ambient p r e s  su re  

Volume flow ra te  
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Re Reynolds Number 

s Surface 

t Time 

V Volume 

V Velocity 

V Velocity vector 

W 

3 

Potential of iner t ia  forces per  unit mass  

X Coordinate 

Y Coordinate 

Z Coordinate 

Greek Symbols 

(Y Constant 

P Constant 

c Relative roughness 

h Nondimensional friction coefficient 

V Kinematic viscosity 

'II Total p r e s  su r  e 

P Density of the mass 

7 Frictional s t r e s s 

Sub sc  r ipt  s 

a Location at entrance 

b Location a t  exit 

1 Refers  to tank 1 and interconnect line 

2 Refers  to tank 2 and draining line 
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INTRODUCTION 

In order  to  get a complete and fundamental understanding of the 

unsteady flow out of the tanks, i t  is best  to s t a r t  with the governing 

equation of momentum and continuity and the derivation of these equations. 

As shown in the following treatment, these governing equations a r e  

subject to grea t  simplification and i t  i s  pointed out that cer ta in  t e r m s  

in  the general  equations may be neglected, e. g. when assuming that the 

hydrodynamic variables a r e  constant over the c ros s  section, comparing 

f i r s t  o rder  t e r m s  with higher order t e r m s  which are  negligible and can- 

celling t e r m s  which a r e  much smaller than the main expressions. After 

obtaining the equations, the application of them on one- and two-tank 

configurations will follow. 
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DERIVATION O F  THE BASIC EQUATIONS OF FLUID FLOW 

The law of momentum fo r  a given mass of fluid 

is 

dm -,- - . v  - 
dt 

where v' denotes the velocity vector and C Z i  denotes the resultant 

external force  on the fluid mass which is equal to  the change of the 

momentum vector m - "v with respect  to time. The momentum vector is 

Variation of any m a s s  m during flow may be a reason of changes in the 

density p and changes in the volume V which the fluid m a s s  takes in any 

moment of time. 

The expression for changing the m a s s  due to the variation of 

the density is 

SlS2 dV ' 
V 

and the change of the mass per  unit t ime due to var ia t ioo of the volume 

is 
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where S is the surface enclosing the volume V and vn is the normal 

component of the velocity acting on a given point of the surface. The 

las t  t e r m  can be  changed with the aid of Green's theorem to a volume 

int egr a1 

o r  with 

With these expressions the law of momentum is 

v S 

t- a ( p q v , ) t -  a +  ( ~ V V  )t-(pV'v,) a 
ax a Y  y a Z  

V 

The resultant external force F consists of the inertia force 1' 
V 

3 

F represents  the inertia force per unit m a s s  (actually with the dimensions 

of acceleration),  and the pressure force  

s 
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+ 
where n is the external normal  to the surface element dS, p is the absolute 

p re s su re .  The third force  comes f rom the friction 

S 
+ -c 
+n is the frictional s t r e s s  or  vector of the frictional force with a normal  n. 

The equation for  the law of momentum now yields 

V 

V S S 

The conversion of the surface integrals to a volume integral  with the 

Green 's  theorem gives 

S V 

I 
where Tx, Ty, TZ a r e  the frictional s t r e s s e s  acting 

perpendicular to the x, y and z axes,  respectively. 

Now 

S V 

where the Del operator shows 

on the surfaces  

(7 )  

4 - c  4 

i, j ,  k a r e  unit vectors  f o r  the X, Y P  axes.  
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The equation for  the law of momentum now is 

The law of conservation of m a s s  can  be writ ten down ve ry  easily 

dm - -  - 0  
dt 

with 

V S 
or 

V V 

These  integral  equations c a n  be applied to  a fluid m a s s  which i s  located 

between the c r o s s  sections a and b. If the element dx is assumed to  be  

v e r y  smal l ,  the volume occupied by the fluid mass will be A dx. 

sur face  enclosing this volume element consis ts  of the two c r o s s  sections 

A, and Ab plus the l a t e ra l  surface K which is equal to the per imeter  P 

t i m e s  the element dx, assuming a smal l  element dx. 

The 
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dx aA A t -  
A ax 

I 

P + Z  dx > ap 

a L d x  _I b 

With this res t r ic t ion  the integral  can  be writ ten 

S Ab K 

Similar to  that, the integral  for  the frictional fo rce  i s  

S Ab K 

The p r e s s u r e  force  is a l s o  for the x-direction 

S Ab K 
* 

where  i is the unit vector in the x direction. Substituting this into 

the equation of momentum yields 

6 



Let  dx be zero  in o rde r  to eliminate the volume integral  and make the 

l imit  condition 

lim 
AX-- 0 

- - S ’ s g  
A 

dA 

The difference between the momentum of entrance and exit can be  

wri t ten at Ax + 0 

- ~ ~ p ~ v x d A t ~ ~ p ; v x d A  

l im  Aa Ab - - a l l p ; v X d A  . 
A x  ax 

A AX -0 

If the length element goes to  zero, the la te ra l  sur face  K changes to the 

pe r ime te r  P, so that 

l im K = l p ; v n d P  . 
Ax 

P AX-, 0 

7 



Also 

l im  V A x  = 1 1 p $ d A  . 
A 

A X -  0 

Similar to the resultant momentum the following relation can be  obtained 

by the l imit  condition. 

and 

- 11 r’x dA t s s q x  dA 

Aa Ab - a l s q x d A  - . 
ax l im  

Ax 
A X - 0  A 

The equation of momentum for the x-projection will be (with the Cauchy 

-+ 
formula n dS = cos  ( n , x )  dS 

A A P A 

p cos (n,  x) dS ss 

K 
Ax 

t l im 
Ax--O 
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The las t  two t e r m s  must  s t i l l  be evaluated. At f i r s t  the iner t ia  force 

p e r  unit mass in  x-direction remains to be determined. 

aw 
ax F x = -  , 

where W is the potential of inertia forces  per  unit mass .  

w = - g x  . 

Substituting into the integral  yields 

A A 

The t e r m  is a pa r t  of the partial  derivative 

A A A 

so 

A A A 

Since 

A A A 

The next s tep i s  making the limit condition 

p cos ( n , x ) d S  
U rS 
K 

A x  l im 
AX--0  

9 



The total p re s su re  will be se t  equal to 

lT = p t  p g x = p  - p w  , 

where W is again the potential of inertia forces  per  unit mass .  

so 

IT cos  ( n , x )  dS t 1s p W cos ( n , x )  dS . (19) 

K 
1s p cos (n ,x )  dS = 

K 
ss 
K 

IT is assumed a t  a good approximation to be a mean value over 

the a r e a ,  so 

1s TT cos (n, x) dS = IT ss cos ( n , x )  dS . 
K K 

and the integral cos (n, x) dS i s  equal to aA dx, neglecting smal l  -ax 
K 

8 ec ond- o r  de r  t e rm s . 
As Ax is going to zero,  the resul t  is  

n cos (n, x )  dS ss 
- aA 

Ax ax - - I T -  K lim 
AX-. 0 

where IT is an  average value around the per imeter  P, So fa r  the 

equation of momentum looks like 

I 
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K 
t lim Ax Ax-, 0 

To eliminate the t e r m  

p W cos ( n , x )  dS ss 
K lim A x  8 

Ax+O 

a relation which includes this can be  derived f rom 

a p WdV = 111 kw dV - 1s p W z d S  ax ax 
V V K 

= sss dV - J1 p W cos (n,  x )  dS . 
V K 

Let Ax-+ 0 

p W cos (n, x)  dS 

( 2 2 )  
a K 

- l l p W d * = s 1 y d A -  ax AX-0 l im A x  
A A 

11 



Substitution of this into the equation of momentum resul ts  in 

A A P A 

J J  

K t lim aA 
- " l l P d A + d  ax ax ~ ~ T X x d A + n -  ax AX- 0 Ax 

A A 

Or with TT = p - p W 

A A P A 

K t l r -  t 2 11 T~~ dA t lim ax ax 
AX-  0 Ax A 

The frictional force pe r  unit a r e a  of la teral  surface is T ~ ,  SO a t  

A x - 0  the term changes to 

P is again the wetted per imeter .  

F o r  simplification the relation can be applied 

A A P 

which includes two t e r m s  of the above equation. 
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Substituting this into the equation of momentum yields 

aA 
b I s p v x d A t -  ax a 11 p vx2 dA = - - ax a I I r d A t n -  ax at 

A A A 

A P 

Since T= is small in comparison with p, the t e r m  can be neglected. 

When the integration over the c ross  section is done, the equation 

becomes 

~ A + T F - -  r o d P  . (27)  ax aA s a a a 
at ax ax - p vX A t - p vXZA = - - 

P 

Since 

a aA ITA = A -  IT t TF- 
a 

ax ax ax * 
- 

the  equation of momentum will be 

ax s - p v x A t - p v x Z A = - A -  a a - T ~ ~ P  , 
at ax  

P 

or  with TT = p - p W = p t p g x ,  integration over the wetted per imeter  P 

gives the resul t  

This  is the equation expressing the law of momentum where vx, p and p 

are  the cross sectional averages of the longitudinal velocity, density 

and p res su re ,  r e  spec tively. 

13 



The conservation of m a s s  as indicated ear l ie r  is equal to 

dm 
dt = o  - 

V V 

o r  

V S 

Similar to the previous relation the integral  can be written in 

x- di r  ec tion 

where A,, Ab and K a r e  the surfaces  enclosing the fluid mass.  

Again let dx be zero. 

.. C' 

V lim Ax AX+ O A 

lim Ab - -2  S S p v x d A  * 
Ax ax AX--0 

A 
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P is the wetted per imeter .  

The equation of continuity now i s  

l lg d A t a  ax J l p v , d A t  S p v n d P = O  

A A P 

The first integral  can be  replaced by the relation 

Substituting this into the above equation del ivers  

a ~ l p d A + d [ ~ p v x d A = O  at ax , 

A A 

and af te r  integration over the c ross  section 

ap A + ~ P V ,  A 
a t  ax = o  . - 

This  is  the equation for  the conservation of m a s s  for  compressible  

and incompressible  flow. 

1 5  

( 3 3 )  

(35) 



APPLICATION TO UNSTEADY FLOW PROCESSES 

Four  different tank configurations will be  t reated a s  samples 

using the equation for the law of momentum. 

1. Flow out of a tank through an  orifice on the bottom where 

the hydraulic loss is assumed to be zero. 

2. Efflux out of a tank through a tube with hydraulic losses.  

3. Two tanks connected by a line. Draining ofsboth tanks 

through one orifice. Hydraulic losses  exist in the interconnect line. 

4. Two tanks connected by a line. Draining of both tanks 

through a tube. Hydraulic losses  exist in the interconnect line and 

draining tube. 

Case 1 - The efflux takes place out of a tank through an orifice. 

The equation of momentum describing the process  without 

hydraulic losses is 

With the substitution of the volume flow ra te  

Q(t) = vx A , 

and dividing by pA, the equation becomes 

Let 

$ f = O .  

that means po = Pa, tanks p re s su re  is equal to  the ambient pressure .  

16 
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Integrating with respect  to x from x = 0 to x = h yields 

h h 

h h 
d Q ~ ~ + Q z ~ A  - 1 1  d x  = gh 
dt 

0 0 

or 

h 
dx Qz 1 1 

dt A A2 
+ 7 (2 - -) = gh 

0 
(39) 

where a ie  the a r e a  of the orifice and A is the a r e a  of the tank. 

Using the relation fo r  replacing the velocity of the fluid level in the tank 

by the change of the height per  t ime 

Q = v X A = - -  dh A , dt 

and with the second derivative 

dh d2h dA dh - - -  dQ - d ( - A z ) = - A  7 - - -  
dt dt dt dt ' 

the equation becomes 

h 

The expression can be rewritten 

dA dh - dA dh (dh) - 
dt dt d t  dt (dh) dh 
- - -- - - - -  

17 



So, the equation will be 

In o rde r  to evaluate the second derivative, the operation can be made 

c o r  

- - - -  
d2h  dt2 - 2 dh (dh>2 dt 

Substituting into the above equation deliver 8 

A I $  [--- 2 dh (”> dt - -  A - dh (,j] t z  (7 - 1) (x) = g h  , 

h 
1 d  1 dA dh 1 A’ dh 

(42) 

0 

or in  another form 

h 

A S $  [--  d (-y] dh dh dt 
t (gs ($ - 1) - 2 d h  dA f % (gy = 2gh , (43) 

0 0 

The differential equation will be after dividing by the integral  

d (dh)’ + 
dh dt 

h 2gp$ -(F At - 1 )  

0 

A f  dh A 

0 

2g 
h 

A S *  A 

0 

h e  (44) 

This linear differential equation can be writ ten in  a simple form with 

($) 2 = 0 8 

18 
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where 

h 

and 

A s "  A 

0 

The solution is 

For evaluating the integration constant C, the boundary 

condition is:  

At 

and 

t = 0 ,  h = H  

19 



Now the assumption is made that the tank consists mainly of a 

cylindrical portion with a flat bottom and that means 

The coefficients af ter  integration a r e  

h 
2-  dA 1% -(z A' - 1) 

dh 

0 

and 

The differential equation now appears  a s  

h 2 h h (SY =exP [I($ - I)?] 1% - 2g exp [ - I ($ - 1) $1 dhl  . (48) 

H H H 

20 
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The integrals will be 

h 
h 

e x p [ - ( $ - - l ) S ? ] = e x p  [ - ( $ - l ) l n h  I,] 
H 

- ($ - 1) -($ - 1) 

and 

h h h -($ - 1 )  

S Z g e x p [ - S ( $  - I ) $ ! ]  d h = 2 g { ( $  dh 

H H H 

h 

-($-’) dh = 2gH h 
- ( F - l ) t  A2 1 

H 

= 2gH 

H 

‘a‘ 

With this calculation the equation becomes 

I az 

21 



or simplified 

(49) 

L J 

It can be said that a t  t = 0 

Q o = a W .  

The differential equation for the liquid level in the tank will then be 

A t t = O  

The above differential equation can be  programmed very  easily in  order 

to Solve i t  numerically by a digital computer to  find the liquid level in 

the tank a t  any time t. 

Case 2 - Efflux out of a tank through a tube with hydraulic losses .  

The equation of momentum taking the hydraulic loss  into account 

is 

where T~ is the frictional force  per  unit a r e a  o r  the skin friction and P 

is the wetted perimeter.  

22  



Since 

70 1 
2 8  

- = - A ,  
P vx 

where A is the nondimensional friction coefficient and is a function of 

h =  h ( R e ,  c )  , 

where E is the relative roughness 

1 is the mean roughness height and d is the diameter of the tube. 

Introducing 

Q(t) = V,A 

the equation of momentum will be 

Dividing by the cross sectional a r e a  A, and density p ,  and 

integrating f rom x = 0 to x = e of the tube, resul ts  in 

e e e - -  

U 0 0 

where  the indices 1 and 2 denote the total head a t  the beginning and the 

end of the tube, respectively. 

It is assumed that the tank is drained only by gravity, po = pa. 

The integration gives 

e 

23 



where  a is the c r o s s  sectional a r e a  of the tube and A is the c r o s s  

sectional a r e a  of the tank. 

Before solving the integral  in  the last t e rm,  the friction 

coefficient A has to be  expressed as a function of the Reynolds Number. 

Experimental  resu l t s  on turbulent fluid motion in  smooth pipes for  the 

fr ic t ion coefficient show expressions made by Nikuradse as 

1 
-0.237 A = 0.00332 t 0.221 Re 

in  the range of Re f r o m  lo4 to  lo8  . 
Hermann found the formula 

-0.3 
A = 0.00540 t 0.396 Re 

f o r  Re < 1.9 X lo6  - 
In order  t o  make the solution general ,  the following expression 

has been chosen 

A ~ a t f l R e - ~  

where p ,  ( - n )  a r e  constants. 

With this  the integral  is 

e e 

X dx = 5 (a t fl  Re'") dx . 
0 0 

The Reynolds Number has the form 

A 
or with D = 473 # 

4 v x A  - 4 Q  - -  
P v  P v  

24 
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Introduced into the above 

e e e hdr=ulT P d x + p Q - n  s-;;; P (K) 4 -n d x .  

0 0 0 

(57) 

The solution of the t e r m s  i s  

e 
d x = W n p ; ; ; ( = )  P 4 -n e 

0 

With these substitutions the equation of momentum will be 

In order  to  get an equation for Q a s  a function of t ime, a 

differentiation with respect  to time must  be applied 

-n  
dh (2-n) Q 1-n - =  dQ 

dt 'dt* 
1 1  

( 5 9 )  

Introducing again 

Q =  - A -  dh 
dt ' 

the  equation yields 

25  



Using the relation 

d2Q d dQ dQ - -  _ -  -- 
dt2 dQ dt dt 

dQ and dividing b y  - resul ts  in 
dt  

e 

I 
- I  
1 
1 

In an  explicit form 

I *  1 1  c r ~ e  o p e  4 -n 
8 1  (E) (2-14 Q-" 

- ( - ) ~ - ~ Q [ - - t ( ? - T ) t - t -  d dQ A 
dQ dt A - dQ 4 A 3  8 A 3  

F o r  high relative roughness the friction coefficient A ,  beginning 

f rom some fixed value of Re, no longer depends on Re. This can be 

seen f rom the experimental resul ts  of Nikuradse. In t h i s  ca se  the 

constant p is equal to zero.  F o r  solving the above equation a high 

relative roughness in the pipe will be assumed. Thus the differential 

equation turns  to 

- d ("") = - &  Q[&- 1 t(- 1 t-) 1 t- a p e  
dQ dt e A - dQ a2 A' 4 A3 

dt 

A substitution can be made 

dQ 
dt - = g  D 

and for simplification the following expressions will be chosen 

26 



With this the differential equation becomes 

Separation of the var iables  yields 

In o rde r  t o  know the range of integration the boundary condition has  to  

be  found. At t = 0, Q = 0, h = H. 

Using Equation (54) 

o r  

The integration of the equation now gives 

dQ 
dt 

s Q d Q =  1 N k - M  N 

= -  

5 d t .  = L  
M s - -  50 N 5 0  = -  H 

e 

27 



Substituting the limit yields 

i n  (X - %  13) . M Ag H - -  Q2 1 dQ M M dQ - - _ - -  t- l n ( m  -x)-- - 
2 N dt NZ N e  N2 e 

Introducing the t e r m s  again for M and N the following equation 

1 

I n  
e 

- %  Hll 
i s  derived. 

numerically fo r  Q(t)  and h( t )  when the relation Q = - A -  i s  applied. 

This is a differential equation which can be  solved 

dh 
dt 

Case 3 - Two tanks connected by a line. 

Draining of both tanks through one orifice.  Hydraulic losses  

exist  in the interconnect line. 

- 
T- _.- f 

L 
1 
1 
1 
I 
1 

28 



The flow f r o m  tank 1 to tank 2 is descr ibed by the equation of 

momentum derived previously 

where the index 1 concerns tank 1 and the interconnect line. 

Assuming a high relative roughness i n  the interconnect line, i. e. , 

p = 0 and using the relations 

and 

dQ 1 d2 h i  
- = - A - T -  dt dt , 

the equation becomes 

Thie differentia1 equation represents  the flow process  out of tank 1 

through the interconnect line. 

In order  to  solve i t  a second equation is needed for  the unknown h t .  

The equation of momentum for tank 2 which only has an  orifice as the 

draining por t  is 

dQD j! dh - -t- 
dt A 

0 

QD is the draining flow and is equal to the sum out of both tanks 

Q D =  Q1 + Qz . 

29 



. I 
Assuming a pure cylindrical tank the integral  is 

h2 

. 
0 

Substituting into the above equation yields 

o r  with 

-(- d2h l  ts) h z t - ( % + - s ( y  AZ dhZ 1 --) 1 = g h z  , 

az Az2 dtz dtz 2 dt 

The two differential equations in an  explicit fo rm for the highest 

derivative a r e  

and 

These equations can  be solved numerically for  determination of the 

liquid levels i n  the tanks a t  any t ime t. 

Case  4 - Two tanks connnected by a line. 

Draining of both tanks through a tube. Hydraulic loeees exist 

in the interconnect line and the draining tube on tank 2. 

30 
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f 
1 

1 - 
Q1 

2 - 
n 
I -- - f 

hZ 

The equation of momentum for tank 1 again is 

e l  dQ1 Q 1 2  1 1 Q I Z  P1 - - + +  2 ( a l z - ~ )  - t ~ [ ~ l - e i + P I Q i  
A3 A dt 

Differentiating the equation with respect  to t ime and substituting 

gives 

The flow process  out of tank 2 is described by the following 

equation 
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The draining flow is 

Substitution results in 

2 (% t s) t -  1 (Q1 t Q2)' 
oz PZ e2 

t (Ql t a,)' 
A dt 2 8 A3 

(77)  

Differentiating with respect  to t ime yields 

g dhz 
* (2-n)  ( Q l  t Q z ) l - n  (z t""> = 7 = -% Qz'  . P z  pz e2 

dt t 
8 A3 

So, the two differential equations are  in  an  explicit fo rm for the highest 

derivative 8 .  

P I P 1  4 -* 
t - (F) ( 2  - n)  Q i  

8 A' 

and 
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A numerical solution is the only method for solving the equation for 

obtaining the flow, (3, and the liquid level, h, in the tanks as  a function 

of time. 
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RESULTS 

An analysis of unsteady flow out of tanks was made and the 

derived equations were  applied to four samples with one- and two-tank 

configurations. The resul ts  a r e  st i l l  differential equations for the flow 

ra te  o r  the liquid level in the tank which must  be solved numerically by 
x; 

a digital computer. 

with flat tops and flat bottoms. 

The tank shape is assumed to be pure cylindrical 
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CONCLUSIONS 

When the p re s su re  force is much la rger  in comparison to the 

force  due to gravity the quasi-steady flow equations will hold t rue  and 

the unsteady flow t e r m s  can be neglected (References 1, 2 and 3). But 

when only gravity is acting on the liquid, the unsteady flow equations 

must  b e  applied. The derived differential equations for  unsteady flow of 

a viscous or  inviscous fluid out of tanks” through a draining tube by which 

’.I 

the tanks can be  emptied simultaneously are  also valid for any other 

tank system. 
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